标签归档:郁彬

COS访谈第十九期:张志华教授

【COS编辑部按】 受访者:张志华   采访者:常象宇   文字整理:王莉晶 朱雪宁

张志华,博士,上海交通大学计算机科学与工程系教授,上海交通大学数据科学研究中心兼职教授,计算机科学与技术和统计学双学科的博士生指导导师。在加入上海交通大学之前,是浙江大学计算机学院教授和浙江大学统计科学中心兼职教授。主要从事人工智能、机器学习与应用统计学领域的教学与研究。迄今在国际重要学术期刊和重要的计算机学科会议上发表70余篇论文。是美国“数学评论”的特邀评论员,国际机器学习旗舰刊物Journal of Machine Learning Research 的执行编委。其公开课《机器学习导论》和《统计机器学习》受到广泛关注。

张志华教授和他的学生们

张志华教授和他的学生们

2015年9月19日晚,在美丽的古都西安,张志华接受了常象宇博士(西安交通大学管理学院助理教授)的采访,王莉晶、朱雪宁对采访稿进行了一些文字上的整理和修改,全文最终由采访人常象宇和被采访人张志华审核定稿。

下面是访谈的全部内容。

常象宇:请您简单介绍一下您博士期间的研究和促使您出国求学的原因。

张志华:当时在国内读博士的时候,我的研究主要是集中在利用模糊数学,神经网络与遗传算法、并利用它们解决图像处理、计算机视觉等中的问题。当时做这些方法还是发表一些论文,毕业条件也很容易达到的,但是自己隐隐约约总觉得这个领域不太对自己胃口。而且博士读了4年,之前博士论文基本完成。最后一年的空档期,我读到了Biometrika和JRSSB上面Peter Green和S. Richardson的关于RJMCMC(Reversible Jump Markov Chain Monte Carlo)的文章。RJMCMC的思想是把参数估计和模型选择放在一个统一的框架下进行。特别是,他们在JRSSB上的文章给出了求解单变量高斯混合模型的RJMCMC方法。当时用高斯混合模型去做图像分割是比较重要的方法,但通常是用BIC等准则进行模型选择,参数估计和模型选择是两个分离的过程。所以当时计算机视觉界关注到RJMCMC。但是我们遇到的问题不是单变量问题,而是高维问题。Green他们文章特别提到,他们方法推广到高维是Open Problem,并说这是个比较难的问题。当时我的第一感觉,我可以解决这个问题。我们利用SVD分解设计了相应的算法,效果也不错。但是里面的证明我还是没法解决,主要是缺少统计背景。但发现这些东西,我突然觉得特别喜欢,所以当时就决定改行。而在国内无法学到这些东西,也找不到相关书籍,当时上国际网是要付费的,不像现在获取资料如此方便。那段时间,在Mike Jordan教授个人主页上发现了他的统计学习的讲义“概率图模型导论”。那个时候下载1M需要大约5元钱。所以颇花了一番周折才弄到Mike 的讲义。读完之后收益非常大, 也喜欢上了统计学习这个方向。意识到相关背景自己缺得太多,而国内很难找到相关书籍啊。

常象宇:您后来又是如何师从了国际著名的统计机器学习专家Michael Jordan教授的呢? 继续阅读COS访谈第十九期:张志华教授

郁彬:让我们拥抱数据科学(Let us own data science)

郁彬教授8月22日在北京大学做了名为让我们拥抱数据科学(Let us own data science)的讲座。在演讲中郁彬从一个统计学家的角度出发,讲述了数据科学的兴起历史和目前状况,并且对统计学科、从事统计相关工作的人士如何跟上时代步伐拥抱数据科学给出了非常多的建议。经过郁彬的允许和支持,本文分享了她此次演讲的幻灯片和视频!

演讲人介绍:郁彬是加州大学伯克利分校统计系和电子工程与计算机科学系的讲席教授,是美国国家科学院、美国艺术与科学院双院士。她曾在威斯康星麦迪逊和耶鲁大学都任过教,并且曾经是贝尔实验室的技术研究成员。她在2009年到2012年间担任加州大学伯克利分校统计系系主任,还是北大微软统计和信息技术实验室的创办者和主任之一。

讲座摘要:This talk is a repeat of my IMS Presidential Address in Sydney at the joint conference of Statistical Society of Australia and IMS in July, 2014. It is about the history of the statistics discipline, the intimate connections between statistics and computing, and the need for Statistics to embrace data science.

幻灯片:http://www.stat.berkeley.edu/~binyu/ps/papers2014/IMS-pres-address14-yu.pdf

中文演讲视频:

在悉尼的英文演讲视频(略有不同):http://www.youtube.com/watch?v=92OjsYQJC1U